Атомная и альтернативная энергетика франции. Топливно-энергетический комплекс франции Французские аэс

Катастрофа на Японской АЭС «Фукусима-1» заставит многие страны пересмотреть свою энергетическую стратегию, а может даже отказаться от атомной энергии. Сегодня в мире энергию атома урана и плутония используют 30 стран. Для некоторых из них, как для Франции и Финляндии – это приоритетный источник энергии. Ниже подборка инфографиков, схем и карт, посвященных катастрофе на АЭС «Фукусима», а также рассказывающих об АЭС в мире.

Инфографика: Устройство атомной электростанции. Источник: «РИА Новости».

Схематическое изображение работы реактора на АЭС, расположенной вблизи океана. Одна из таких АЭС – японская атомная электростанция «Фукусима-1», где произошла катастрофа.

Сколько необходимо энергоресурсов для того, чтобы 100 ватная лампочка горела в течение года?
В течение года она потратит: 0,1 кВт*8760 часов в году = 876 киловатт-час (кВт/ч).

Для этого необходимо (на выбор):
714 фунта или 323 килограмма угля
0,035 фунта или 15,8 грамма урана
2 часа и 20 минут для 1 МВт турбины ветряной электростанции, задействованной на 25%.
8 дней и 18 часов для солнечных батарей площадью в 100 кв. метров.
2 часа и 35 минут для 339 кВт турбины, гидроэлектростанции, действующей с эффективностью в 80% и при условии, что ежесекундно падает 500 кубических футов или 14 кубических метров воды с высоты в 10 футов или в 3 метра.

Инфографика: Катастрофа на АЭС «Фукусима-1». Источник: «Итар-Тасс» по материалам Reuters.

Инфографика: Катастрофа на АЭС «Фукусима-1» и карта эвакуации населения, проживающего вблизи АЭС. Источник: Reuters.

Инфографика: Уровни опасной радиации. Уровни радиоактивного излучения, с которым мы сталкиваемся каждый день и уровень, который может стать для нас опасным. По данным газеты National Post.

Карта: Атомные электростанции мира на 2009 год. Составитель: Д. В. Заяц, канд. географических наук.

Карта размещения атомных реакторов в мире. Всего в мире 442 действующих реактора. Установка еще 287 запланирована на ближайшие годы. Источник: International Energy Agency

Карта атомных электростанций Франции и мощность АЭС. Составитель: Д. В. Заяц, канд. географических наук.

Карта расположения АЭС Германии

Карта расположения АЭС Германии, совмещенная с картой сейсмичности.

Благодаря парку АЭС, состоящему из 58 реакторов, более 75% электроэнергии, вырабатываемой во Франции, производится на атомных станциях. .

1. История французской гражданской атомной энергетики

Комиссариат по атомной энергии (CEA) был создан в октябре 1945 года с целью проведения научно-технических разработок ввиду использования атомной энергии в различных отраслях науки, промышленности и государственной обороны. КАЭ немедленно приступил к сооружению нескольких исследовательских реакторов, первым из которых явилась установка ЗОЭ, пущенная в эксплуатацию в Фор-де-Шатийон (ныне – исследовательский центр Фонтенэ-о-Роз) в пригороде Парижа 15 декабря 1948 года.

В 1956 году в Маркуле был пущен в эксплуатацию реактор G1 - первый французский реактор, производивший электроэнергию, мощностью 40 МВт. Еще два реактора, G2 и G3, появляются в 1959 и 1960 гг. Они предназначены для отработки уран-графит-газовой технологии (UNGG) - типа реактора, избранного Францией в целях оснащения своих АЭС.


АЭС Шинон

Вслед за сооружением реакторов на промплощадке в Маркуле Франция продолжила разработку реакторов типа UNGG на промплощадках Шинон (1963, 1965 и 1966 гг.), Сен-Лоран-дез-О (1969 и 1971 гг.) и Бюжэ (1972 г.), хотя начиная с 1962 г. КАЭ приступил к сооружению экспериментального атомного тяжеловодного реактора, охлаждаемого углекислым газом, мощностью 70 МВт; он был подключен к энергосети в 1967 г.

Все эти реакторы со временем были остановлены, и в настоящее время проводятся работы по выводу из эксплуатации и реабилитации. В связи с нефтяным кризисом начала 1970-х годов Франция приняла решение о массовом переходе на атомную энергетику и начала амбициозную программу сооружения АЭС. Атомные электростанции носят унифицированный характер и основаны на водо-водяной технологии REP, разработанной в США.

В настоящее время установленная мощность парка АЭС составляет 63 ГВт, он состоит из 58 водо-водяных реакторов (REP), принадлежащих группе компаний Электриситэ де Франс (EDF), которые расположены на 19 промплощадках (34 блока мощностью 900 МВт, 20 блоков мощностью 1 300 МВт и 4 блока N4 мощностью 1 500 МВт). Последний атомный блок N4 мощностью 1 450 МВт электрических в Сиво был подключен к энергосети в декабре 1999 г. и пущен в эксплуатацию в апреле 2002 г.


АЭС Сиво

В 2014 году средний возраст работающих французских АЭС составляет 28 лет (считая с момента их пуска в промышленную эксплуатацию).

Закон, определяющий направления французской энергетической политики, принят 13 июля 2005 года; в нем подтверждается выбор в пользу атомной энергии как основного источника электроэнергии во Франции, даже если Франция поощряет диверсификацию производства электроэнергии на базе возобновляемых источников (энергия ветра-биомасса). Доля атомной энергетики в энергобалансе Франции составляет примерно 75%.

В настоящее время разрабатывается проект закона о «Планировании перехода к новому энергобалансу»; он может быть представлен на рассмотрение в Парламент в конце 2014 г. или к началу 2015 г. В этом проекте закона будут определены направления французской энергетической политики на ближайшие годы, а также подтверждено значение атомной энергии и возобновляемых источников энергии во французском энергобалансе.

Срок эксплуатации трети всех АЭС, находящихся в настоящее время в эксплуатации, истекает к 2020 году; в целях обновления своего парка АЭС Франция готовится к развертыванию реакторов новых поколений, отвечающих требованиям экономической конкурентоспособности, защиты окружающей среды и повышенной ядерной безопасности. В апреле 2007 года Франция приступила к сооружению реактора третьего поколения EPR во Фламанвиле / департамент Ламанш, его пуск в промышленную эксплеатацию запланирован на 2016 г.



Предполагаемый облик реактора АСТРИД

Франция реализует также исследовательские программы, посвященные технологии реакторов четвертого поколения в перспективе их развертывания к 2040 г. По прототипу такого реактора, названному АСТРИД, в настоящее время проводятся научно-исследовательские работы, предусмотренные в рамках закона 2006 г. об обращении с РАО; планируется, что прототип будет готов к работе в начале 2020-х.

Выбор атомной энергии объясняется несколькими причинами: он позволяет Франции обеспечить свою энергонезависимость (Франция импортирует менее 50 % энергоресурсов), защиту окружающей среды (Франция является европейским государством, производящим наименьшее количество парниковых газов) и конкурентоспособную и стабильную стоимость электроэнергии.

2. Эксплуатируемые АЭС



Расположение французских АЭС


Ресурс 58 реакторов, расположенных на 19 однотипных промплощадках, которые построены с таким расчетом, чтобы оставаться в эксплуатации не менее 40 лет, гарантирует эффективное, безопасное, не обремененное парниковыми газами производство электроэнергии.

3. АЭС в процессе вывода из эксплуатации

На приводимых ниже АЭС имеются один или несколько реакторов, которые больше не эксплуатируются и находятся в процессе вывода из эксплуатации:


4. Ядерная безопасность

Ядерная безопасность – это комплекс технических мероприятий, направленных на предупреждение аварий, которые выполняются на всех этапах, от проектирования до вывода из эксплуатации ядерных установок, включая транспортировку радиоактивных материалов.

Ядерный надзорный орган ASN - независимый административный орган, созданный в 2006 г. в целях обеспечения транспарентности и ядерной безопасности, осуществляет контроль за деятельностью в гражданской атомной энергетике Франции; ему поручена охрана труда работников отрасли, охрана здоровья пациентов, которым приходится прибегать к рентгенотерапии, охрана общества и природной среды от рисков, связанных с использованием атомной энергии.

Институт радиационной защиты и ядерной безопасности ISRN осуществляет государственную экспертизу в сфере изучения ядерных и радиационных рисков.

По запросу Премьер-министра ASN провел во Франции в 2011 г. Углубленный Анализ Ядерной безопасности (ECS) после аварии на АЭС Фукусима. По результатам ECS в отношении первоочередных ядерных установок в январе 2012 г. был опубликован отчет, согласно которому проанализированные установки обеспечивают достаточный уровень безопасности и не требуют немедленного останова. В то же время ASN полагает, что в случае их дальнейшей эксплуатации будет необходимо в кратчайшие сроки повысить, сверх имеющихся у них запасов безопасности, их устойчивость к экстремальным ситуациям.

5. Обращение с радиоактивными отходами

ANDRA , Государственному агентству по обращению с РАО, поручено долговременное обращение с радиоактивными отходами, образующимися во Франции. В рамках этой миссии АНДРА предоставляет свои знания и умения на службу государству в следующих целях: найти, реализовать и гарантировать надежные решения по всем РАО французского происхождения, дабы защитить нынешние и грядущие поколения от опасности, которую собой представляют эти отходы.

АНДРА регистрирует наличие ядерных отходов на территории Франции с 1991 года и публикует «географическую опись» этих отходов с 2004 года. В задачи агентства входит также определение объемов РАО для обращения через 10 лет, 20 лет и более.



Местоположение объектов АНДРА

Радиоактивные отходы классифицируются в зависимости от интенсивности радиоактивного излучения и периода радиоактивности. Ядерный надзорный орган ASN различает очень короткоживущие отходы (радиоактивность снижается вдвое менее чем через 150 суток), короткоживущие отходы (радиоактивность снижается вдвое менее чем через 30 лет) и долгоживущие отходы (радиоактивность снижается вдвое более чем через 30 лет). 58 ректоров, имеющихся во Франции, производят 1 кг РАО на одного жителя в год, из которых около 900 г – слабо- и сренеактивные короткоживущие отходы, 90 г – среднеактивные долгоживущие отходы и 10 г – высокоактивные отходы. 96% радиоактивности содержатся в менее чем 1% отходов.

Обращение с этими ядерными отходами производится в зависимости от их категории, с соблюдением ядерной безопасности и радиационной защиты в рамках закона от 28 июня 2006 года о долговременном обращении с радиоактивными материалами и отходами.

Следует отметить, что Франция является одной из немногих стран, которые имеют на своей территории все установки ЯТЦ, включая конверсию, обогащение, изготовление, переработку и повторное использование ядерных материалов. Франция является мировым лидером в области контроля за ядерной безопасностью ЯТЦ.

Атомно-энергетическая карта США - в сущности карта промышленно-развитых районов страны. По тем местам, где нет значков АЭС, можно диагностировать физико-географические неудобья: Аппалачи (плюс голуботравье Кентукки), гористые пустыни Запада.

На карте Франции АЭС также тяготеют к главным промышленным ядрам и ареалам: интеграционный с Великобританией берег Ла-Манша, северные интеграционные зоны с Бельгией и Люксембургом (притчей во языцех стало «нахальное» положение станции Шо в выступе, где территория Франции вдоль долины Мёза/Мааса буквально вклинивается в Бельгию*), долина Роны. «Пощажен» лишь Париж: АЭС отодвинуты от него, но всего на сотню километров, а так, он - в атомном кольце.

Парижу энергия АЭС очень нужна, но он слегка «побаивается» территориальной близости станций, да и земля чем ближе к Парижу - тем дороже. А вот вторая французская проплешина - зона, свободная от ядерных реакторов, - Центральный массив. Здесь ситуация другая: здесь бы и можно строить, да не нужно. Это самая отсталая часть Франции - центральная периферия. Сюда завышенная потребность в энергии еще не доползла.

Более осторожное размещение, пожалуй, в Японии, со времен Хиросимы испытывающей радиофобию. Такого, чтобы АЭС стояла в пригороде Нью-Йорка или Чикаго, здесь нет. Большая часть мощностей АЭС - не на гиперразвитом и не гиперзаселенном восточном берегу, а на западной стороне, в прибрежной полосе «задворочного» для Японии Японского моря. Но и здесь две гигантские Фукусимы и Хамаока - всего в двух сотнях километров от Токио (как и десногорская Смоленская и удомельская Калининская - от Москвы).

Японские фирмы собираются строить первую в Объединенных Арабских Эмиратах атомную станцию.

* И ничего, Бельгия терпит: ведь она импортирует электричество из Франции.


http://samogo.net/articles.php?id=900

Самой мощной электростанцией в мире, на настоящий момент, считается китайская гидроэлектростанция на реке Янцзы - "Три ущелья". Территориально она находится рядом с городом Саньдоупин, округ Ичан в провинции Хубей. И хотя станция ещё не вышла на полную проектную мощность в 22,4 ГВт со среднегодовой выработкой 100 000 ГВт ч, но уже в 2008 году ее совокупная установленная мощность составила более 14,1 ГВт.



И даже с неполным показателем, ГЭС "Санься", она же "Три ущелья", обогнала бразильско-парагвайскую ГЭС "Итайпу", установленная мощность которой составляет 12,6 ГВт, которая лидировала в мировом рейтинге мощнейших гидроэлектростанций с 1991 г.

Самой мощной электростанцией в России является Саяно-шушенская ГЭС с установленной мощностью 6,4 ГВт. Эта электростанция расположена на реке Енисей, в посёлке Черёмушки (Хакасия), возле Саяногорска.

Кроме того, стоит отметить самую мощную в мире атомную электростанцию "Касивадзаки-Карива" , находящуюся в Японии, Фукусима. Эта атомная электростанция имеет 10 реакторов общей мощностью в 9096 МВт. Семь блоков этой станции имеют общую производительность более 8000 МВт.

Самой большой солнечной электростанцией является электростанция Sarnia , распологающаяся на юго-западе Онтарио, Канада.

Александр Озеров, Samogo.Net

Самая мощная электростанция © 2011


http://www.manbw.ru/photo/atom/uk-scotland.html

Атомные электростанции Фотографии, Великобритания Chapelcross Местоположение: Dumfriesshire Оператор: British Nuclear Fuels Ltd Конфигурация: 4 X 60 МВт газоохлаждаемый ядерный реактор Ввод в эксплуатацию: 1959-1960 (остановлена в 2004) Поставщик реактора: Управление Великобритании по атомной энергии Поставщик турбогенератора: Parsons Photograph by Ric Gemmell and courtesy of BNFL Dounreay DFR Местоположение: Caithness Оператор: Управление Великобритании по атомной энергии Конфигурация: 1 X 14 МВт реактор-размножитель на быстрых нейтронах Ввод в эксплуатацию: 1958 (остановлена в 1969) Поставщик реактора: Управление Великобритании по атомной энергии Поставщик турбогенератора: n/a Комментарий: Атомная электростанция Dounreay была предназначена для исследований. Photograph courtesy of UKAEA Dounreay PFR Местоположение: Caithness Оператор: Управление Великобритании по атомной энергии Конфигурация: 1 X 250 МВт реактор-размножитель на быстрых нейтронах Ввод в эксплуатацию: 1976 (остановлена в 1994) Поставщик реактора: Управление Великобритании по атомной энергии Поставщик турбогенератора: General Electric (UK) Photograph courtesy of UKAEA Hunterston-B Местоположение: Ayrshire Оператор: British Energy plc Конфигурация: 2 X 625 МВт усовершенствованный реактор с газовым охлаждением Ввод в эксплуатацию: 1976, 1977 Поставщик реактора: Nuclear Power Group Поставщик турбогенератора: Parsons Photograph courtesy of British Energy Hunterston-A Местоположение: Ayrshire Оператор: British Nuclear Fuels Ltd Конфигурация: 2 X 160 МВт GCR Ввод в эксплуатацию: 1964 (остановлена в 1989-1990) Поставщик реактора: General Electric (UK) Поставщик турбогенератора: Parsons Инжиниринг: General Electric (UK), Mowlem Комментарий: По завершении строительства это была самая мощная атомная электростанция в мире Photograph by David Partner and courtesy of BNFL Torness Местоположение: East Lothian Оператор: British Energy plc Конфигурация: 2 X 700 МВт усовершенствованный реактор с газовым охлаждением Ввод в эксплуатацию: 1988-1989 Поставщик реактора: National Nuclear Corp Поставщик турбогенератора: General Electric (UK) Photograph courtesy of British Energy Trawsfynydd Местоположение: Gwynedd, Wales Оператор: British Nuclear Fuels Ltd Конфигурация: 2 X 235 МВт газоохлаждаемый ядерный реактор Ввод в эксплуатацию: 1965 (остановлена в 1991) Поставщик реактора: Управление Великобритании по атомной энергии Поставщик турбогенератора: Richards and Westgarth Photograph by Skyscan and courtesy of BNFL Wylfa Местоположение: Gwynedd, Wales Оператор: British Nuclear Fuels Ltd Конфигурация: 2 X 495 МВт газоохлаждаемый ядерный реактор Ввод в эксплуатацию: 1971 Поставщик реактора: The Nuclear Power Group Поставщик турбогенератора: English Electric Комментарий: Атомная электростанция Wilfa была последней с газоохлаждаемым ядерным реактором. Photograph courtesy of Pisces Conservation Ltd

Атомные электростанции
Фотографии, Германия


Biblis
Местонахождение электростанции: ОН
Оператор: RWE Power AG
Конфигурация электростанции: 1 Х 1,255 МВт, 1 Х 1,300 МВт, ядерные реакторы с водяным охлаждением под давлением
Ввод в эксплуатацию: 1974-1976
Поставщик реактора: Siemens
Photograph courtesy of RWE Power AG


Brokdorf
Оператор: E.ON Kernkraftwerk
Конфигурация электростанции: 1,370 МВт, ядерный реактор с водяным охлаждением под давлением
Ввод в эксплуатацию: 1986
Поставщик реактора: Siemens
Поставщик турбогенератора: Siemens


Brunsbuttel
Местонахождение электростанции: SH
Оператор: E.ON Kernkraftwerk
Конфигурация электростанции: 806 МВт, ядерный реактор с кипящей водой
Ввод в эксплуатацию: 1976
Поставщик реактора: Siemens
Поставщик турбогенератора: Siemens
Photograph courtesy of Vattenfall


Emsland (Lingen)
Оператор: Kernkraftwerk Липпе-Lippe-Ems
Конфигурация электростанции: 1,363 МВт, ядерный реактор с водяным охлаждением под давлением
Ввод в эксплуатацию: 1988
Поставщик реактора: Siemens
Поставщик турбогенератора: Siemens
Photograph courtesy of Siemens AG


Grafenrheinfeld
Местонахождение электростанции: BY
Оператор: E.ON Kernkraftwerk
Конфигурация электростанции: 1,345 МВт, ядерный реактор с водяным охлаждением под давлением
Ввод в эксплуатацию: 1981
Поставщик реактора: Siemens
Поставщик турбогенератора: Siemens


Grohnde
Местонахождение электростанции: Ni
Оператор: E.ON Kernkraftwerk
Конфигурация электростанции: 1,430 МВт ядерный реактор с водяным охлаждением под давлением
Ввод в эксплуатацию: 1984
Поставщик реактора: Siemens
Поставщик турбогенератора: Siemens
Photograph by Peter Hamel and courtesy of E.ON AG


Gundremmingen
Оператор: KKW Gundremmingen
Конфигурация электростанции: 2 Х 1,344 МВт, ядерные реакторы с кипящей водой
Ввод в эксплуатацию: 1984
Поставщик реактора: Siemens
Поставщик турбогенератора: Siemens
Photograph courtesy of KKW Gundremmingen


Neckar
Оператор: GKKW Neckar GmbH
Конфигурация электростанции: 1 Х 840 МВт, 1 Х 1,365 МВт, ядерные реакторы с водяным охлаждением под давлением
Ввод в эксплуатацию: 1976-1989
Поставщик реактора: Siemens
Поставщик турбогенератора: Siemens
Photograph courtesy of GKKW Neckar GmbH


Obrigheim
Местонахождение электростанции: Rp
Оператор: KKW Obrigheim GmbH
Конфигурация электростанции: 357 МВт,ядерный реактор с водяным охлаждением под давлением
Ввод в эксплуатацию: 1967 (остановлена в мае 2005 г.)
Поставщик реактора: Siemens
Поставщик турбогенератора: Siemens
Photograph courtesy of Power


Phillipsburg
Местонахождение электростанции: BW
Оператор: Kernkraftwerk Philippsburg
Конфигурация электростанции: 1 Х 926 МВт ядерный реактор с кипящей водой, 1 Х 1,458 МВт ядерный реактор с водяным охлаждением под давлением
Ввод в эксплуатацию: 1980-1985
Поставщик реактора: Siemens
Поставщик турбогенератора: Siemens
Photograph by Sebastian Stumpf


Stade
Местонахождение электростанции: Ni
Оператор: E.ON Kernkraftwerk
Конфигурация электростанции: 672 МВт, ядерный реактор с водяным охлаждением под давлением
Ввод в эксплуатацию: 1972 (остановлена в 2003 г.)
Поставщик реактора: Siemens
Поставщик турбогенератора: Siemens
Photograph courtesy of Die Bundesregierung


Unterweser
Местонахождение электростанции: Ni
Оператор: E.ON Kernkraftwerk
Конфигурация электростанции: 1,350 МВт, ядерный реактор с водяным охлаждением под давлением
Ввод в эксплуатацию: 1978
Поставщик реактора: Siemens
Поставщик турбогенератора: Siemens
Photograph by Strauss and courtesy of E.ON AG


Атомные электростанции
Фотографии, США (Пенсильвания)


Beaver Valley
Местоположение: PA
Оператор: FirstEnergy
Конфигурация: 2 X 888 МВт ядерные реактоы с водяным охлаждением под давлением
Ввод в эксплуатацию: 1976-1987
Производитель реактора: Westinghouse
Производитель турбогенератора: Westinghouse
Инжиниринг: Stone & Webster
Photograph courtesy of FirstEnergy


Limerick
Местоположение: PA
Оператор: Exelon Nuclear
Конфигурация: 2 X 1,143 МВт ядерные реакторы с кипящей водой
Ввод в эксплуатацию: 1986-1990

Инжиниринг: Bechtel
Photograph courtesy of Exelon Corp


Peach Bottom 2&3
Местоположение: PA
Оператор: Exelon Nuclear
Конфигурация: 2 X 1,182 МВт ядерные реакторы с кипящей водой
Ввод в эксплуатацию: 1974
Производитель реактора: General Electric
Производитель турбогенератора: General Electric
Инжиниринг: Bechtel

В мире насчитывается более 400 действующих атомных электростанций. Они расположены на территории Японии, Франции, США, Южной Кореи, Украины и других стран. Какая же из этих АЭС является наиболее мощной и где находится самая большая и мощная атомная электростанция в мире – этот вопрос интересует многих. Постараемся на него ответить.

Касивадзаки –Карива занимает первое место в рейтинге самых больших электростанций мира. Она находится в Японии на территории префектуры Ниигата. Ее строительство началось в 1977 году, спустя восемь лет станция была готова.

Электростанция Касивадзаки –Карива состоит из семи реакторов. Ее мощность равна 8212 МВт . Эта цифра делает ее самой мощной и большой АЭС в мире.

В 2007 году случилась внештатная ситуация. Из-за землетрясения была остановлена работа АЭС. Произошло заражение радиацией и возгорание. Спустя два года реакторы снова были запущены, но не в полном объеме. Руководство планирует вернуть к работе все реакторы к 2019 году.


Фукусима

Электростанция состояла из двух частей под названием Фукусима-1 и Фукусима-2. Они находились недалеко друг от друга, поэтому из-за больших рисков пришлось закрыть оба объекта.

Фукусима – 1 находится на территории одноименной префектуры около города Окума в Японии. Ее постройка началась в середине 60-х. Электростанция была запущена в 1971 году. Спустя 40 лет работа этого огромного предприятия была остановлена. Из-за сильного цунами и землетрясения было повреждено охлаждающее оборудование реакторов. Руководство объявило о чрезвычайной ситуации, так как уровень радиации был превышен.

Фукусима – 2 расположена возле города Нараха. Она была сдана в эксплуатацию в 1982 году. Из-за случившейся аварии Фукусима – 2 также не работает.

До 2011 года атомная электростанция Фукусима считалась самой мощной в мире. Но из-за сильного землетрясения некоторые реакторы расплавились, и электростанция перестала функционировать.

На данный момент запрещено приближаться к электростанции ближе, чем на 10 км. Эта территория названа зоной эвакуации.


Атомная электростанция, которая находится в Южной Корее, на берегу Японского моря. Все АЭС строятся возле больших водоемов, потому что реактором необходимо охлаждение. Они получают его от воды.

Эта большая АЭС была введена в эксплуатацию в 1978 году. Энергетическая мощь составляет 6862 МВт , ее обеспечивают семь работающих реакторов.

Электростанция Кори постоянно растет и обновляется. В данный момент идет строительство двух дополнительных объектов, которые позволят увеличить мощность АЭС.


Эта электростанция расположена на территории Канады, в районе Онтарио, в городе Брюс Каунти. Рядом находится озеро Гурон.

АЭС Брюс считается фаворитом среди всех АЭС Северной Америки, так как ее мощность равна 6232 МВт . В штатном режиме работают восемь атомных реакторов.

Первый реактор был построен в 1978 году, остальные были сконструированы в течение последующих восемнадцати лет.

В 90-е годы работа двух реакторов была заморожена из-за неполадок. Их обновление длилось в течение нескольких лет. В начале века модернизированные реакторы были запущены.

АЭС Брюс занимает второе место по мощности в мире после Касивадзаки –Карива.


Запорожская АЭС

Это главная действующая АЭС Украины. Она находится в городе под названием Энергодар в Запорожской области. Иногда ее называют АЭС Энергодар.

Запорожская АЭС – крупнейшая атомная станция в Европе, в ее состав входят шесть реакторов, суммарная мощность которых равна 6000 МВт .

В 1984 году стартовал запуск первого блока. После этого каждый год открывались новые реакторы, вплоть до 1987 года.

В 1989 году было принято решение о запуске пятого энергоблока. Затем модернизация АЭС временно прекратилась, так как был введен мораторий на строительство атомных реакторов. В 1995 году этот закон был отменен, и был сдан в эксплуатацию шестой блок АЭС.


АЭС Ханул (Ульчин)

Место расположения – город Кенсан-Пукто в Южной Корее. Мощность АЭС равна 5881 МВт. Это самая крупная АЭС в Южной Корее.

Торжественный запуск АЭС состоялся в 1988 году. Тогда она была названа Ульчин, в честь одноименного района. Но в 2013 году сменила свое имя на Ханул.

На сегодняшний день там успешно функционирует шесть блоков. В 2018 году запланирован старт еще двух реакторов, строительство которых идет уже долгих пять лет.

Ханул – восьмая АЭС государства Южная Корея. И если составить перечень стран-лидеров по количеству активных атомных реакторов, то Южная Корея несомненно вошла бы в этот список, заняв пятое место.


Другая гордость атомной промышленности Южной Кореи – АЭС Ханбит. Ее мощь равна 5875 МВт . Ханбит всего на шесть единиц уступает своей старшей корейской сестре, АЭС Ханул.

АЭС Ханбит находится в городе Йонван, поэтому часто ее называют АЭС Йонван.

В штатном режиме работают шесть реакторов водно-водяного типа PWR. Запуск реакторов шел с 1988 года по 2002 год.


Гравелин – крупнейшая АЭС во Франции. Ее показатели мощности равны 5706 МВт .

АЭС находится в живописном месте, на берегу Северного моря, недалеко от населенного пункта Дюнкерк. В состав АЭС входят шесть энергетических блоков, которые были построены в течение 11 лет, в период с 1974 по 1984 года.

На АЭС Гравелин ежедневно трудится 1600 тысячи человек, обеспечивая свою страну энергией.

Франция стоит на втором месте в мире по числу АЭС, пальма первенства находится в руках США.


Пало-Верде

Это наимощнейшая АЭС в США. Следует отметить, что это единственная станция в мире, которая расположена далеко от водоемов. Если посмотреть на карту, мы с удивлением обнаружим, что Пало-Верде – это АЭС в пустыне. Она охлаждается при помощи сточных вод мегаполисов, расположенных по соседству.

Пало-Верде начала функционировать в 1988 году. Три реактора обеспечивают общую мощность 4174 ВМт .


Атомные электростанции расположены по всему миру. Они не только обеспечивают мегаполисы энергией, но и несут в себе угрозу. Самая мощная и большая атомная электростанция находится в Японии.

На АЭС "Фламанвиль" произошел взрыв. По предварительным данным, пострадали пять человек. Как утверждают представители власти, угрозы выброса радиоактивных веществ нет.

По информации издания Ouest France, взрыв прогремел около 10:00 по местному времени (12:00 мск) в машинном отделении электростанции. Как сообщил представитель префекта Оливье Мармион, в результате инцидента пять человек получили легкое отравление, но тяжелораненых нет. На месте работают экстренные службы.

По данным префектуры, угрозы утечки радиоактивных веществ нет, поэтому режим чрезвычайной ситуации не вводился. В целях предосторожности работа первого энергоблока приостановлена. После аварии на АЭС "Фукусима" в Японии многие страны начали сокращать атомную энергетику, и Франция оказалась в их числе. За последние годы 20 из 58 атомных реакторов в стране были закрыты.

Autorité de Sûreté Nucléaire (ASN) - орган, отвечающий за безопасность атомной энергетики, - заявляет, что необходимо тщательно обследовать все реакторы на предмет их безопасности. Во Франции все чаще звучат сомнения относительно безопасности такого источника энергии, а также относительно качества некоторых компонентов АЭС , произведенных как на территории Франции, так и в Японии, которая печально известна своими авариями и последующими радиоактивными утечками.

Основа электрогенерации во Франции

АЭС французского поставщика электроэнергии EDF генерируют до 75% всего объема электроэнергии, необходимого Франции. АЭС размещены в 19 пунктах по всей стране. Так как в последнее время АЭС проходили проверки и закрывались, это привело к падению генерации до минимальных уровней с 1998 г. – всего 26,6 ТВт в сентябре, по данным оператора французских электросетей Reseau de transport d‘electricite.

А так как все больше АЭС будет закрываться со временем, то прогнозируется, что EDF будет сокращать объем электроэнергии в 2017 г. до 390 ТВт- 400 ТВт. Для сравнения, в период с 2005 по 2015 гг. средний объем электричества в год составлял 417 ТВт. Несмотря на то что в 2009 г. он упал до 390 ТВт, за последнее десятилетие средний объем был выше 400 ТВт. А так как EDF прогнозирует сокращение генерации, это привело к росту цен в IV квартале 2016 г. и I квартале 2017 г. и на 2017 г. на €1,70/МВт, €1,65/МВт и €1,20/МВт соответственно. Чтобы компенсировать нехватку энергии, Франция наращивает использование угля и других горючих ископаемых, а также импорт электроэнергии.

Сомнительные материалы и документация

В основе атомного кризиса во Франции лежат две проблемы. Одна связана с содержанием углерода в стальных деталях, которые были произведены французской компанией AREVA SA, которая является мировым производителем атомных реакторов. Вторая проблема касается подделанных, фальсифицированных и неполных отчетах о контроле качества самих компонентов.

Избыточный уровень углерода может сделать компоненты более хрупкими под высоким давлением. Изначально эта проблема была обнаружена как раз на АЭС "Фламанвиль" еще в 2014 г. Однако затем оказалось, что эта проблема существует во многих компонентах, которые планировалось использовать при строительстве других проектов.

Были проведены проверки, в связи с чем АЭС были временно закрыты. В ходе проверок выявлены другие недочеты. В итоге в ходе проверки выяснилось, что с 2015 г. выпускались головки парогенераторов с повышенным содержанием углерода, что могло привести к пониженному качеству. Эти головки применялись на 18 реакторах.

Последствия ощущаются во всем мире

Трейдеры и аналитики энергетического рынка предупреждают, что Франции необходимо подготовиться к длительному периоду ремонта, принимая во внимание устаревшую атомную инфраструктуру и тот факт, что в ходе проверок обнаруживается все больше дефектов. В среднем реактор во Франции в настоящий момент старше 30 лет, а оборудование необходимо обновлять чаще.

А ужесточение требований в области безопасности будет означать тот факт, что поставки компонентов будут задерживаться, особенно после того, как ASN ввела дополнительные проверки. Тем не менее Франция, равно как и Германия, еще до этих проблем начала задаваться вопросом о том, насколько безопасной является атомная энергетика, особенно после аварии на АЭС "Фукусима".

С 2011 г., когда произошла катастрофа в Японии , некоторые представители власти высказывали идею о необходимость снизить зависимость от атомной энергетики до 50%. Однако многие консерваторы по-прежнему рассматривают атомную энергетику как ключевой фактор национальной политики в области защиты окружающей среды и экономики, так как Франция является лидером в атомной энергетике.

Государственная компания EDF ведет строительство и обслуживание АЭС по всему миру. На сегодняшний день компания принимает участие в проектах в таких странах, как Китай, Финляндия, Бельгия и Великобритания . Логично предположить, что так как проблемные компоненты, произведенные компаниями Le Creusot и JCFC, использовались в проектах в других странах мира, аналогичные проблемы могут распространиться и за пределами Франции.

Безопасность под вопросом

Несмотря на выявленные проблемы с качеством компонентов, EDF продолжает настаивать на том, что нет никакого риска, так как уровень безопасности очень высокий. Тем не менее вопросы к качеству продукции Le Creusot, которая оказалась в центре проблемы, продолжают появляться.

При более подробном изучении появляются новые проблемы, а число нарушений, обнаруженных в компонентах, растет. А ведь многие компоненты уже установлены на АЭС. При этом общее число нарушений за период проверок выросло с 33 до 83. Только на одной АЭС "Фламанвиль" количество нарушений выросло с 2 до 20 за время проверок.

Тестирование и кризис

Шон Берни, специалист по атомной энергетике в Greenpeace Germany, отмечает: "Атомная промышленность во Франции в настоящий момент переживает кризис, причиной которого стали тесты на содержание углерода. При этом 11 реакторов были поставлены японскими компаниям, и впоследствии они были закрыты на время расследования регулятора".

Эксперт отмечает, что подобные тесты не проводились в Японии, поэтому ни власти, ни люди, проживающие в непосредственной близости от реакторов, не знают о том, какую опасность представляют АЭС. Япония , по его словам, также может обязать компании провести аналогичное тестирование на АЭС. В первую очередь речь идет о реакторах "Сендай-2" и "Иката-3", которые являются единственными работающими в Японии.